

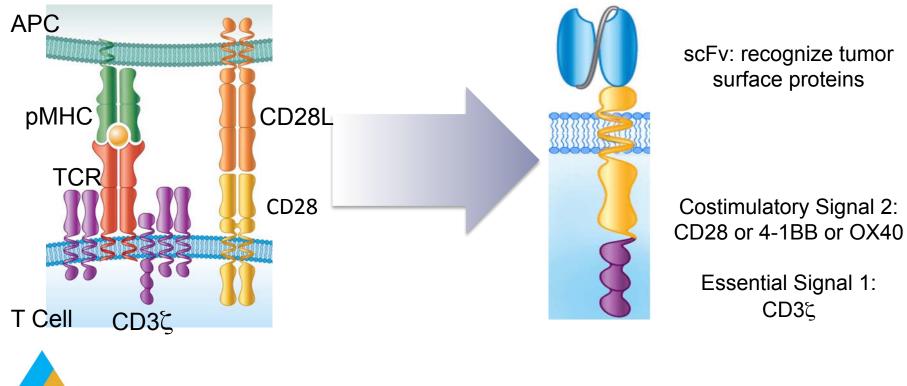
Chimeric Antigen Receptor T Cell Therapy

Yi Lin, MD, PhD Mayo Clinic, Rochester, MN

Alliance Spring Group Meeting - May 13, 2016

Presentation Objectives

- Scientific overview of chimeric antigen receptor (CAR) T cell therapy
- CART Mechanism of action
- Overview of CART clinical trials
- CART patient eligibility considerations

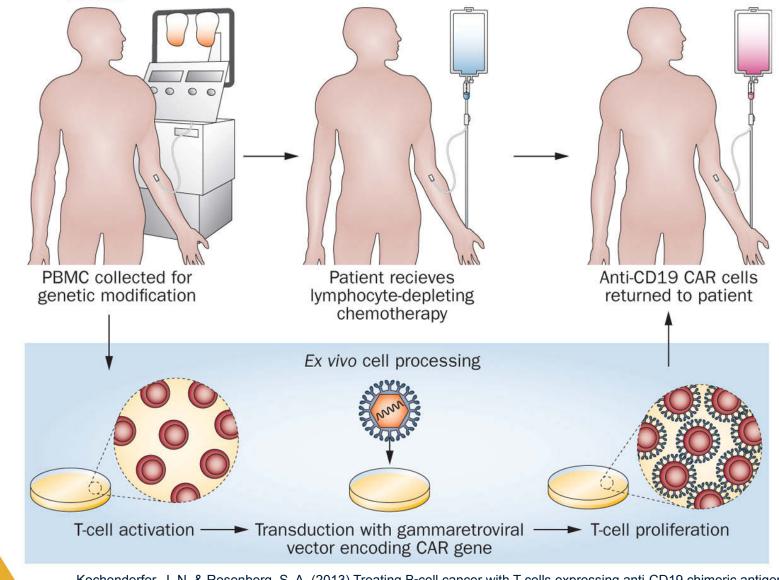


CAR Design: Critical Elements of T Cell Activation and Function in a Single Molecule

CAR T cells are genetically altered to express CAR on the cell surface.

T Cell Receptor

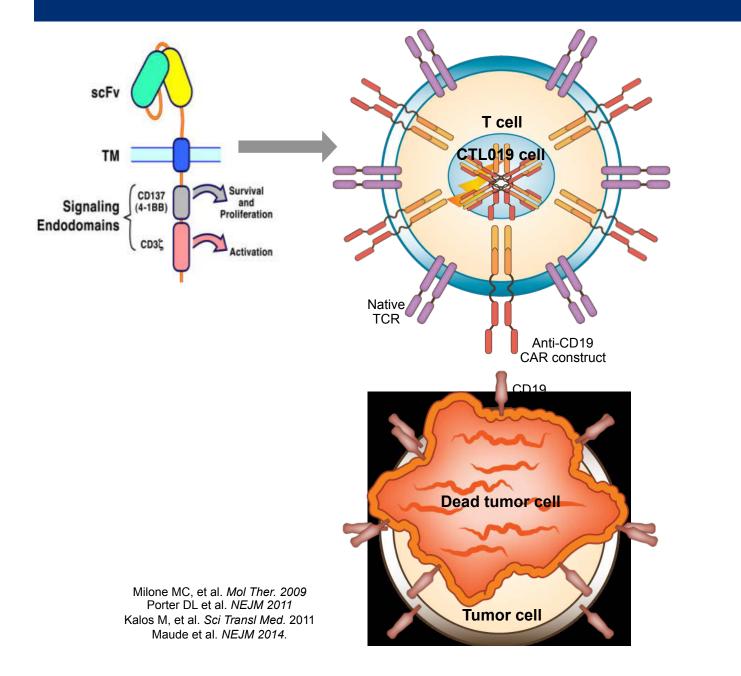
Chimeric Antigen Receptor



Activation Independent of MHC Limited to cell surface proteins

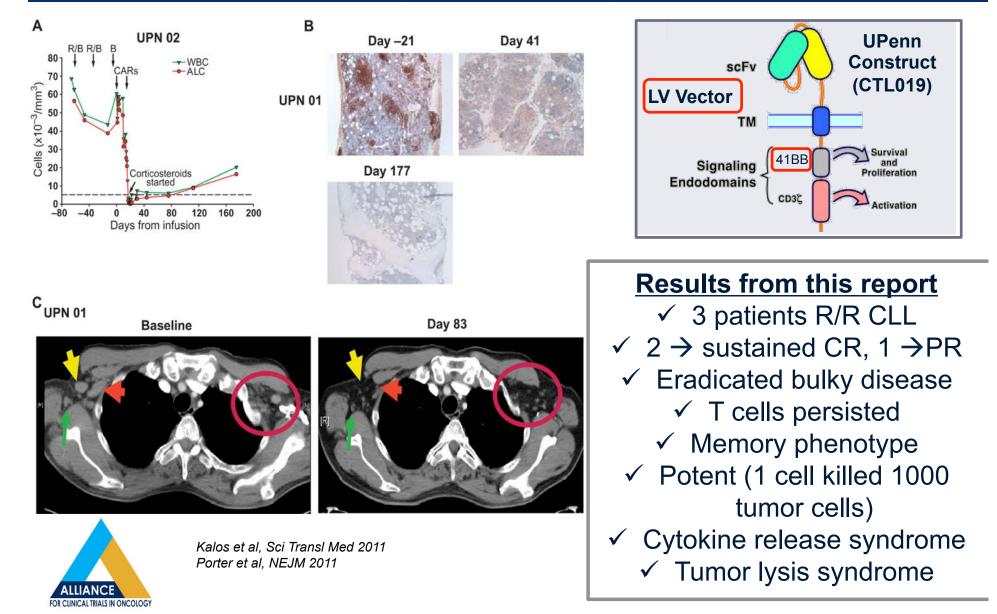
Schema of CAR T manufacturing and administration

Patient

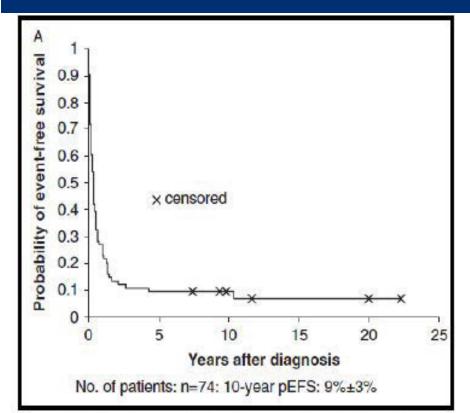


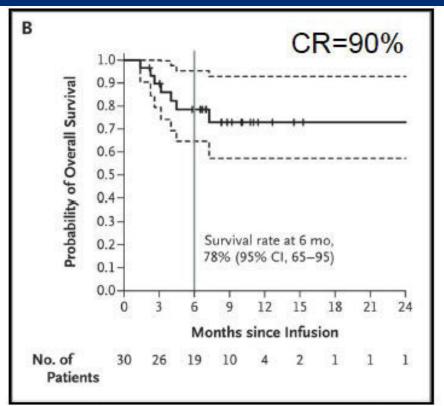
Kochenderfer, J. N. & Rosenberg, S. A. (2013) Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. *Nat. Rev. Clin. Oncol.* doi:10.1038/nrclinonc.2013.46

Chimeric Antigen Receptor T cells (CARTs)


Lentivira

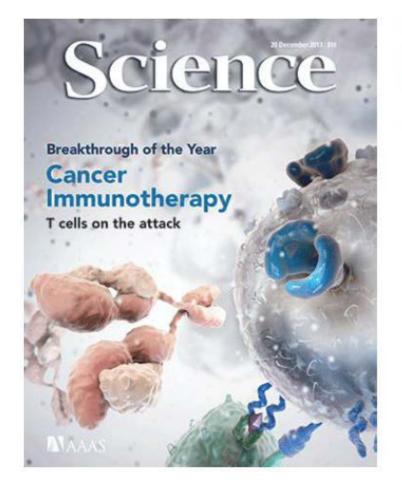
vector




First Successful Report of CART19 in CLL (UPenn Trial)

High Response Rates in ALL

Historic outcomes of patients with relapsed/refractory acute lymphoblastic leukemia


Outcomes of patients with relapsed/refractory acute lymphoblastic leukemia treated with CART19

> Grupp et al, ASH Abstract #380 Maude et al, NEJM 2014

High Response Rates in ALL

	University of Pennsylvania ³¹	Memorial Sloan Kettering Cancer Center ²⁸	National Institutes of Health ³⁰
Target antigen	CD19	CD190	CD190
CAR generation	2nd	2nd	2nd
Vector	Lentivirus	Retrovirus	Retrovirus
Costimulatory domain	4-1BB	CD28	CD28
Duration of culture	8-12 days		11 days
No. of ALL patients	30	16	20
Conditioning regimen	Individualized, mainly fludarabine based.	Cyclophosphamide 3 g/m ² day 2	Fludarabine 25 mg/m ² days 4, 3, 2 Cyclophosphamide 900 mg/m ² day 2
Median follow-up	7 months	NR	10 months
Overall survival	78%	NR	51.6%
No. of patients undergoing allo-HSCT	3	7	10
Response Morphologic CR MRD negative CR	90% 73%	88% 75%	70% 60%
Duration of CAR T-cell persistence	11 months	3 months	68 days

Cancer Immunotherapy Breakthrough of the Year 2013

2013 Breakthrough

Cancer Immunotherapy

The Runners-Up

CRISPR

CLARITY

Human Stem Cells from Cloning

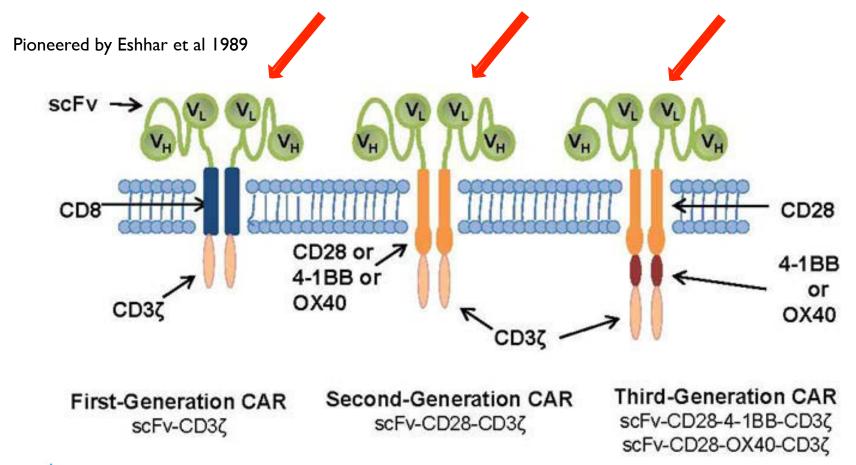
Mini-Organs

Cosmic Particle Accelerators Identified

Perovskite Solar Cells

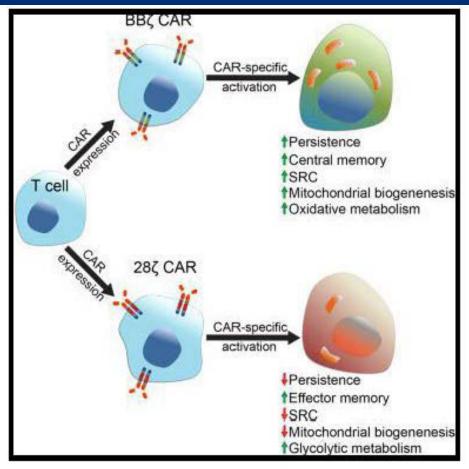
Why We Sleep

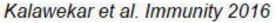
Our Microbes, Our Health

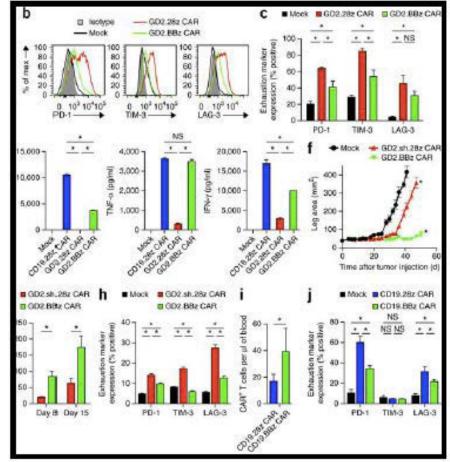

In Vaccine Design, Looks Do Matter

Critical Components of CART as a Drug

- CAR construct
- CAR delivery system
- CART phenotype and function
- CART persistence




CAR Construct: What generation is your CAR?



CAR Construct: CD28 vs 41BB

Long et al. Nature Medicine 2015

CAR Construct: Antigen Selection

- CD19 expression is generally restricted to B cells and B cell precursors¹
 - CD19 is not expressed on hematopoietic stem cells or other tissue
- CD19 is expressed by most B-cell malignancies
 - CLL, B-ALL, DLBCL, FL, MCL

AIIIANC

FOR CLINICAL TRIALS IN ONCOLOGY

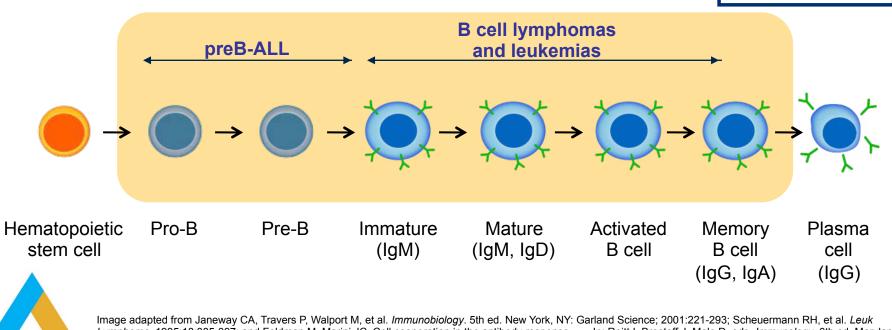


Image adapted from Janeway CA, Travers P, Walport M, et al. *Immunobiology*. 5th ed. New York, NY: Garland Science; 2001:221-293; Scheuermann RH, et al. *Leuk Lymphoma*. 1995;18:385-397; and Feldman M, Marini JC. Cell cooperation in the antibody response. In: Roitt I, Brostoff J, Male D, eds. *Immunology*. 6th ed. Maryland Heights, Missouri: Mosby;2001:131-146.

CD19 expression

CAR Construct: Antigen Selection

• On target, off-tumor toxicity

- High binding affinity results in recognition of low antigen expression in normal tissue
- Ex. Liver injury with anti-carbonic anhydrase IX CART
- Ex. Pulmonary toxicity with anti-Her2 CART
- Can be fatal

Morgan RA et al. Mol Ther 2010; 18(4):843-851. Lamers CH. JCO 2006;24(13):e20-e22.

CAR Construct: Delivery System

Viral System

- Lentivirus, retrovirus
- Most commonly used in trials to date
- Permanent genetic modification
- Costly

Non-Viral System

- Transposon/Transposase
 - Permanent genetic modification
 - Less expensive for manufacturing
- RNA transfection
 - Temporary genetic expression
 - Strategy for limiting toxicity

CAR T Phenotype & Function

• Optimize T cell population

- CD4 to CD8 proportion
- Central vs effector vs stem memory T cells
- Activated vs exhausted state
 - Duration of culture
 - Cytokines

CAR T Persistence *in vivo*: Clinical Relevance

CD19 positive relapses (4/30 patients, 13.3%) Poor expansion - CTL019 cells are lost

CD19 negative relapses (3/30 patients, 10%) Good expansion and persistence of CTL019

Grupp et al, ASH Abstract #380 Maude et al, NEJM 2014

CAR T Persistence *in vivo*: Conditioning Chemotherapy

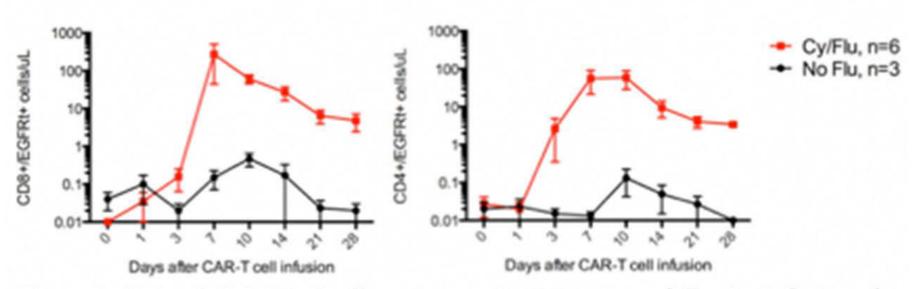
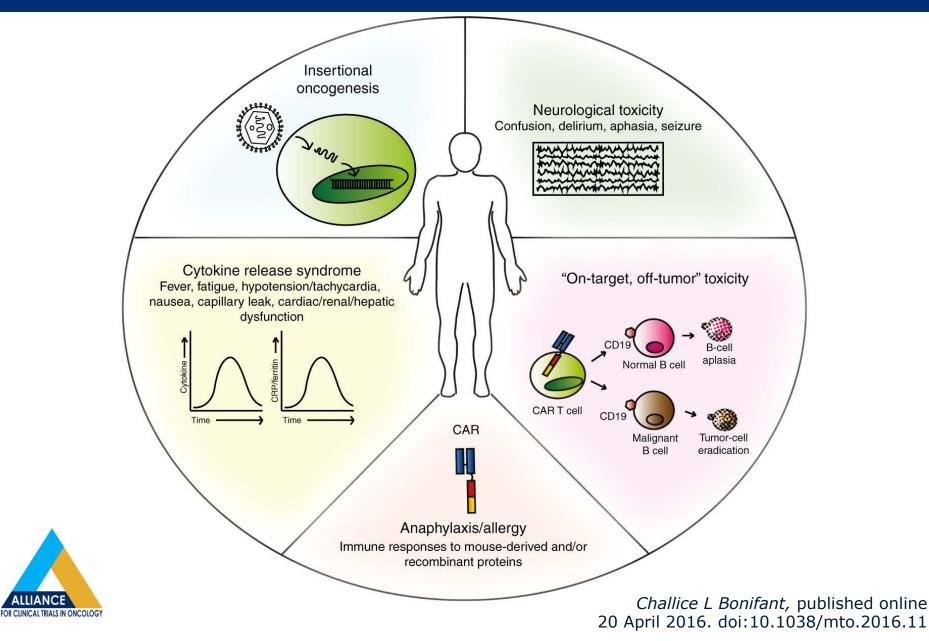
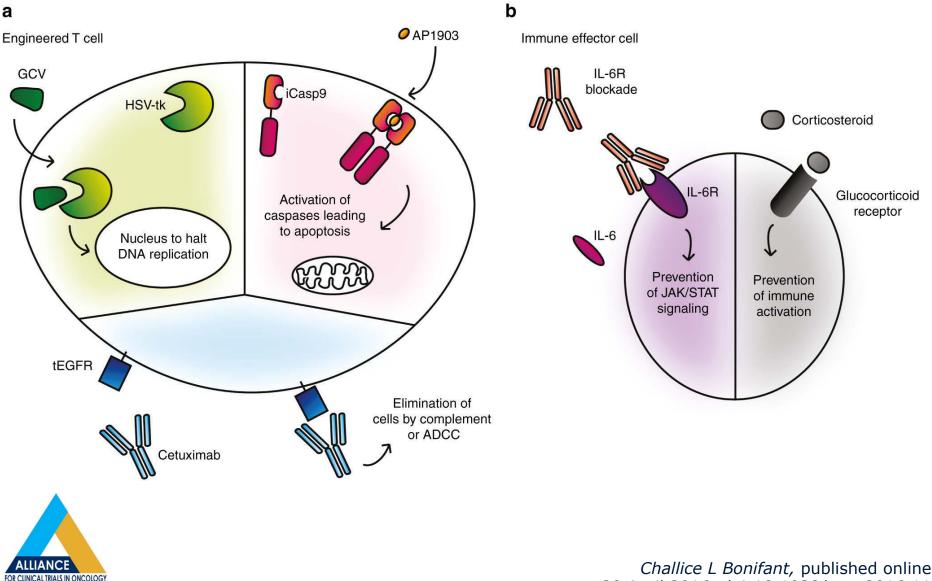



Figure 1. CD4 and CD8 CAR-T cell persistence in NHL patients following infusion of 2 x 10⁷ cells/kg after conditioning with (n=6) or without (n=3) Fludarabine.



Cameron J Turtle et al. Blood 2015;126:184

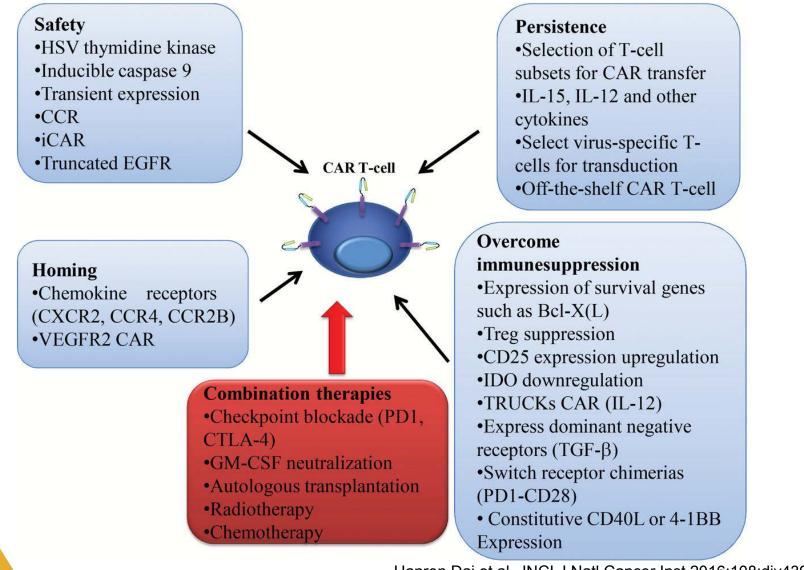
CAR T Toxicities

Strategies to Manage CAR Toxicities

20 April 2016. doi:10.1038/mto.2016.11

ONGOING CLINICAL TRIALS

CART Programs at Academic Centers


Center	Target	Condition	Construct	Results
Penn	CD19 CAR	ALL	BBz, LV	90% CR
NIH	CD19 CAR	ALL	28z, RV	70% CR(ITT)
MSKCC	CD19 CAR	ALL	28z, RV	88% CR
NIH	CD19 CAR	Lymphoma	28z, RV	85% aggressive lymphomas, 100% indolent lymphomas
Seattle	CD19 CAR	ALL	BBz, LV	83% CR
Penn	CD19 CAR	Lymphoma	BBz, LV	50% CR aggressive lymphoma, 100% indolent
Penn	CD19 CAR	CLL	BBz, LV	25% CR rate
MDACC	CD19 CAR	CLL/ALL/NH L	28z, SB	23% CR rate
NIH	CD22 CAR	ALL	BBz, LV	8 patients treated
NIH	BCMA CAR	Myeloma	28z, RV	6 patients treated

Kenderian et al. BBMT in press.

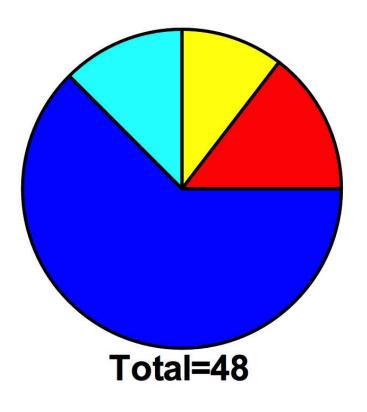
Reference	Antigen	Gene-transfer vector used	Endomains	Cell culture	Cell dose	Conditioning	Cytokine support	No. of patients	Responses to CAR T-cells	Persistence
Kershaw 2006 (111)	o-folate receptor	Gammaretrovirus	FcRy	10ng/mL OKT3+600 IU/mL IL-2; 21-56 d	3×10 ⁹ -1.69×10 ¹¹ T-cells (1-3 infusions)	None	IL-2 9(720000 IU/ kg) was given i.v. every 12h in cohort 1	14 patients with ovarian cancer	14 PD	4-21 d
Park 2007 (71)	CD171	Electroporation	CD3ζ	30ng/mL OKT3+50U/mL IL-2 + irradiated PBMC/ lymphoblastoid cell line feeders; 14 d (1-3 infusions)	1×10 ⁸ /m ² -1.1×10 ⁹ /m ²	Salvage chemotherapy	None	6 children with neuroblastoma	1 PR, 5 PD	short (1-7 d) n patients vith bulky isease, but ignificantly onger (42 d) n a patient vith a limited isease burden
Lamers 2013 (108)	CAIX	Gammaretrovirus	FcRy	10ng/mL OKT3+100 IU/mL IL-2; approximately 21 d	0.2×10 ⁹ -2.1×10 ⁹ CAR T-cells (5 infusions)	None	5×10 ⁵ U/m ² twice daily administered for 20 d	12 patients with metastatic renal cell carcinoma	12 NR	lp to 3–5 wk
Louis 2011 (20)	GD2	Gammaretrovirus	СDХ	OKT3+100 or SOU/mL IL-2 + irradiated PBMC/ lymphoblastoid or PBMC; 12-18 d and 36-54 d	2×10 ⁷ /m ² -1×10 ⁸ CAR T-cells/m ²	None	None	19 patients with neuroblastoma	8 NED, 3 CR, 1 PR, 1 SD, 4 PD, 2 tumor necrosis	:6 wk
Morgan 2010 (107)	HER2	Gammaretrovirus	CD137- CD28-CD3ζ	SOng/mL OKT3+300 IU/mL IL-2 (a rapid expansion) procedure: 6000 IU/mL + SOng/mL OKT3 + irradiated PBMC feeders; 24 d	10 ¹⁰ T-cells	60mg/kg cyclophos phamide ×2 and flurodarabine 25mg/m ² ×5	None	1 patients with colorectal cancer	Died of cytokine release syndrome	vied 5 d after reatment
Brown 2015* (70)	IL13Ro2	Electroporation	CD3ζ	30ng/mL OKT3+50U/mL IL-2; approximately 63 d	9.6×10 ⁸ - 15.35×10 ⁸ CDB+ T (11-17 infusions)	None	None	13 enrolled, 3 treated (glioblastoma)	3 PD	lp to 184 d
Katz 2015† (106)	CEA	Gammaretrovirus	CD28-CD3ζ	50ng/mL OKT3+3000U/ mL IL-2; 17-25 d	Cohort 1: 10.1×10 ⁹ CAR T; Cohort 2:30×10 ⁹ CAR T (3 infusion)	None	Cohort 1: none; Cohort 2: 75 000U/ kg/day	6 patients with denocarcinoma liver metastases	5 PD, 1 SD	. ipproximatel .! wk
Ahmed 2015 (12)	HER2	Gammaretrovirus	CD28-CD3ζ	OKT3 or CD3/CD28 beads + 100U/mL IL-2; 12-21 d	1×10 ⁴ /m ² -1×10 ⁸ CAR T-cells/m ² (1-9 infusions)	None	None	19 patients with sarcoma	4 SD	lp to 18 me

CART Research Directions

ALLIANCE FOR CLINICAL TRIALS IN ONCOLOGY

Hanren Dai et al. JNCI J Natl Cancer Inst 2016;108:djv439

CAR T-CELL DEALS


Institution/Company	Date	Partner	Terms
University of Pennsylvania	August 2012	Novartis	Undisclosed
Celgene	March 2013	Bluebird Bio, Baylor College of Medicine	Unspecified upfront payment plus up to \$225 million per product in option fees and milestone payments
Cellectis	June 2014	Pfizer	\$80 million upfront plus up to \$185 million per product and royalties
Cellectis	January 2015	/Ohio State University	Undisclosed
Kite Pharma	January 2015	/Amgen	\$60 million upfront and up to \$525 million per product in milestone payments, plus royalties on sales and IP licensing
Md Anderson	January 2015	/Ziopharm, Intrexon	\$100 million in stock and \$15–20 million/year for 3 years

CAR T-CELL BIOTECH IPOs

Company	Date	Value	
Kite Pharma	June 2014	\$134.1 million	
Bellicum	December 2014	\$160 million	
Juno	December 2014	\$264.6 million	
Cellectis	March 2015	\$228 million	

The CAR T Cell Race. The Scientist April 2015.

CART Clinical Trials

Pharma Phase I

Pharma Phase I/II, II

Academic Centers Phase I/II, II

Academic Centers Phase I

Clinicaltrials.gov

CART Clinical Trials

Hematologic Malignancies Solid tumors (n=10)

- Lymphomas, ALL (n=34)
 Types
- Myeloma (n=3)
- AML (n=2)

- - GBM
 - Neuroblastoma
 - Pancreas cancer
 - Sarcoma
 - NSCLC
 - Triple negative breast cancer
- Antigens
 - EGFRvIII, PSCA, GD2, Her2, ROR1, CD171

Patient Eligibility Considerations

- Adequate blood cell count for leukapheresis
- Relative disease stability
 - CART manufacturing generally 2 4 weeks
 - Disease not progressing rapidly through manufacturing period
- Patient ability to tolerate CAR T toxicities
 - Good major organ functions
 - heart, lung, kidney, liver
 - Neurologic considerations
 - Seizure risk, CVA, CNS disease

Conclusion

- Questions from Audience
- Answers from Presenter

